Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
نویسندگان
چکیده
Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to identify adsorbed polymer phases on fluorescent single-walled carbon nanotubes (SWCNTs) that allow for the selective detection of specific neurotransmitters, including dopamine. We functionalized and suspended SWCNTs with a library of different polymers (n = 30) containing phospholipids, nucleic acids, and amphiphilic polymers to study how neurotransmitters modulate the resulting band gap, near-infrared (nIR) fluorescence of the SWCNT. We identified several corona phases that enable the selective detection of neurotransmitters. Catecholamines such as dopamine increased the fluorescence of specific single-stranded DNA- and RNA-wrapped SWCNTs by 58-80% upon addition of 100 μM dopamine depending on the SWCNT chirality (n,m). In solution, the limit of detection was 11 nM [K(d) = 433 nM for (GT)15 DNA-wrapped SWCNTs]. Mechanistic studies revealed that this turn-on response is due to an increase in fluorescence quantum yield and not covalent modification of the SWCNT or scavenging of reactive oxygen species. When immobilized on a surface, the fluorescence intensity of a single DNA- or RNA-wrapped SWCNT is enhanced by a factor of up to 5.39 ± 1.44, whereby fluorescence signals are reversible. Our findings indicate that certain DNA/RNA coronae act as conformational switches on SWCNTs, which reversibly modulate the SWCNT fluorescence. These findings suggest that our polymer-SWCNT constructs can act as fluorescent neurotransmitter sensors in the tissue-compatible nIR optical window, which may find applications in neuroscience.
منابع مشابه
Comparative Dynamics and Sequence Dependence of DNA and RNA Binding to Single Walled Carbon Nanotubes.
Noncovalent polymer-single walled carbon nanotube (SWCNT) conjugates have gained recent interest due to their prevalent use as electrochemical and optical sensors, SWCNT-based therapeutics, and for SWCNT separation. However, little is known about the effects of polymer-SWCNT molecular interactions on functional properties of these conjugates. In this work, we show that SWCNT complexed with rela...
متن کاملA DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes
In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...
متن کاملTuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors
Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmit...
متن کاملModeling Investigation of Dielectric Constant Effect on NMR and IR Properties of C48 as a Single Walled Carbon Nanotube
A cluster model for active site of nanotube (C48) was presented and investigated the geometricstructure and thermochemical parameters. Quantum-mechanical calculations were performed at theHF / 510-30, 6-310, 6-3 IG• and 6-310" levels of theory in the gas phase and three solvents atfour temperatures. Also, nuclear shielding parameters of the active site of nanotube have been takeninto account us...
متن کاملTheoretical study of functionalized single-walled carbon nanotube (5, 5) with Mitoxantrone drug
Objective(s): First principles calculations were performed to study four multiple sclerosis drugs namely, Ampyra, Fingolimod, Mitoxantrone and Eliprodil in gas and liquid phases using Density Functional Theory (DFT). Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for Ampyra, Fingolimod, Mitoxantrone and Eliprodil. Materials and Methods: Al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 2 شماره
صفحات -
تاریخ انتشار 2014